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Transition to turbulence in a pipe is characterized by the increase of the characteristic
lifetimes of localized turbulent spots (‘puffs’) with increasing Reynolds number (Re).
Previous experiments are based on visualization or indirect measurements of the
lifetime probability. Here we report quantitative direct measurements of the lifetimes
based on accurate pressure measurements combined with laser Doppler anemometry
(LDA). The characteristic lifetime is determined directly from the lifetime probability.
It is shown that the characteristic lifetime does not diverge at finite Re, and follows
an exponential scaling for the observed range 1725 � Re � 1955. Over this small Re
range the lifetime increases over four orders of magnitude. The results show that the
puff velocity is not constant, and the rapid disintegration of puffs occurs within 20–70
pipe diameters.

1. Introduction
The transition to turbulence in pipe flow can be characterized by the lifetimes

of localized turbulent spots or ‘puffs’. These puffs co-exist with the laminar flow
state, and travel downstream with a velocity of around the bulk velocity (Lindgren
1969; Wygnanski & Champagne 1973). Faisst & Eckhardt (2004) used a direct
numerical simulation (DNS) to investigate the lifetime of the turbulent flow state in
a short periodic pipe. They found that the probability P (t; Re) of survival at a given
Reynolds number (Re) decays exponentially with time, reminiscent of a memoryless
process, i.e.

P (t; Re) = exp[−(t − t0)/τ (Re)], (1)

where t0 represents a formation time of the disturbance, and τ (Re) the characteristic
lifetime of the disturbances. Faisst & Eckhardt (2004) obtained τ (Re) from the median
lifetime of the disturbances, which appeared to scale as τ−1 ∝ (Rec −Re), where Rec is
a critical Reynolds number at which the lifetime diverges. Earlier, new solutions of the
Navier–Stokes equations for pipe flow, in the form of travelling waves, were identified
(Faisst & Eckhardt 2003; Hof et al. 2004; Wedin & Kerswell 2004). These solutions
were thought to form a strange saddle in phase space, so that a disturbance of the
base flow, i.e. Hagen–Poiseuille flow that is represented as a stable node, leads to a
transient for which the duration increases proportional to the Reynolds number. A
divergence of the duration of the transient, or lifetime of the disturbance, that occurs
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at finite Reynolds number implies a transition from a strange saddle to a strange
attractor in phase space (Eckhardt et al. 2007). The strange attractor would implicate
turbulence as a sustained flow state.

Faisst & Eckhardt (2004) found Rec
∼= 2250, which agrees with empirical data.

However, re-examination of the data, where τ (Re) was evaluated directly from the
slope of P (t; Re) in a semilog plot, showed that τ (Re) scales exponentially, i.e.
τ−1 ∝ exp(−Re), so that the lifetime does not diverge at a finite critical Reynolds
number (Hof et al. 2006). To examine in which way the lifetime diverges with Re
requires long observations times of several hundred or even thousands of integral
time scales.

Peixinho & Mullin (2006) carried out an experiment to determine P (t; Re) by
observing the decay of a puff in a constant mass flux pipe. First, a puff was generated
at Re =1900, and when it had survived 100 pipe diameters the Reynolds number
was reduced, and the decay of the puff was observed. The turbulent motion in the
puff was visualized with small platelets, and the moment of decay was determined
visually. The results confirmed the exponential probability in (1), and it was found
that τ−1 scales linearly with Rec

∼= 1750 ± 10. Willis & Kerswell (2007a) represented
the experiment in a DNS. They also found an exponential distribution for P (t; Re)
and a linear scaling of τ−1, although the observation times where rather short,
with Rec

∼= 1870. However, re-evaluation of their data showed that the same results
would be reconcilable with an exponential scaling of τ−1 (Hof et al. 2007; Willis &
Kerswell 2007b). Recent data (Hof et al. 2008) showed that the lifetime scales super-
exponentially, i.e. τ−1 ∝ exp[−(Re/c)n] with n= 9 and c =1549, over eight orders of
magnitude in τ .

The measurements of τ (Re) by Hof et al. (2006, 2008) are based on the probability
P (Re; L) that a puff survives a given pipe length L as a function of Reynolds number.
This probability has a characteristic S-shape in the case of an exponential scaling of
τ (Re). However, this implicitly assumes that P (t; Re) has the form given in (1). Also,
this experiment does not allow to constantly monitor the formation of the puff after
the injection, the motion of the puff along the pipe, and its sudden decay. Especially
at high Reynolds number, where only a very small fraction of puffs decays before
reaching the pipe exit, it is difficult to make a distinction between puffs that decay
in the pipe and a possible misfiring of the disturbance mechanism or disturbances
that failed to generate a puff. Furthermore, this approach requires an estimate of the
mean puff velocity, in order to convert the distance L into a lifetime.

In this paper, we report results of quantitative lifetime measurements that are based
on accurate pressure measurements. This makes it possible to directly determine
P (t; Re), rather than relying on an implicit assumption that the lifetime probability
follows (1). Since we measure over a pipe section that excludes the injection it is
possible to determine τ (Re) irrespective of the puff formation. The inlet length for
laminar pipe flow at Re = 2 × 103 is ∼120 D, so that any applied disturbances that
failed to generate a puff are expected to have decayed before the first pressure tap
at L/D = 125 (see § 2). Apart from being able to directly measure the lifetime t that
individual puffs travel along the pipe, it is possible to determine the decay time during
which the puff disintegrates. It is thus possible to validate the assumption of sudden
puff decay that underlies the expression for P (t; Re) in (1).

2. Experimental set-up and method
The flow facility used for the measurements is similar to the set-up used by Hof et al.

(2006, 2008). Figure 1 shows a schematic overview of the set-up. The main difference
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Figure 1. Schematic of the experimental set-up. A: overflow reservoir to maintain constant
pressure head (H); B: heat exchanger; C: flow conditioner containing several meshes with
reducing grid size and a smooth 1:100 area contraction; D: flow disturbance; E: pipe exit with
second reservoir from which fluid is pumped back into reservoir (A); PT 1,2: pipe sections over
which the pressure drop is measured by a pressure transducer. S: indicates a pipe section; laser
Doppler anemometry (LDA): location of velocity measurement by LDA. Inset, left: measured
friction factor (×) as a function of Reynolds number together with Poiseuille’s friction law
(—); error bars represent an estimate of the total experimental error. Inset, right: velocity
profile measured with LDA (×) together with a calculated velocity profile based on the mass
flow rate (—).

is that in the current set-up special care is taken to reduce pressure fluctuations. The
20 m long pipe is made of 16 glass tubes, each 120–130D in length, with an inner
diameter of D = 10 ± 0.01 mm. The pipe sections are joined by PMMA connectors
with the same inner diameter, that contain 0.5 mm holes which could either be
used for sensing the pressure or to introduce the flow disturbance. The water flow
is driven by the constant pressure head generated by the height difference between
the free surface of the overflowing reservoir (A) and the outflow of the pipe (E).
At regular intervals the fluid from reservoir E is pumped back into the base from
which the overflowing reservoir is fed. The flow rate of the system can be adjusted
manually by changing the total pressure head between 3.0 and 3.5 m (corresponding
to 30–35 × 103 Pa).

To reduce pressure fluctuations in the pipe, the amount of overflowing fluid has
been minimized. Furthermore, the fluid was introduced from the bottom and guided
through a set of flow straighteners to remove any remaining fluctuations caused by
the pump and the introduction of the fluid into the reservoir. From the top reservoir,
the fluid flows through a feeding line consisting of two segments: one 10 m long
copper tubing segment and one 15 m long flexible tubing segment.

The 20 m pipe section is thermally insulated from the environment. To control
the temperature of the working fluid, temperature-controlled water is forced around
the copper segment (B), creating a heat exchanger by which the daily temperature
variation is maintained to within ± 0.3 ◦C. To determine the exact Reynolds number
at which each measurement is taken, the temperature of the water is continuously
monitored at the pipe exit (E) using a calibrated mercury thermometer. Using a
digital camera, the temperature reading could be determined with a precision of
3.4 × 10−3 oC.
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The main pressure drop occurs between sections A and C, where the tube has a
smaller diameter (6 mm) than in the straight pipe. In this section the flow remains
turbulent, and the total pressure loss is much larger than in the 10 mm diameter pipe.
Introduction of a turbulent disturbance in the pipe (D) lowers the flow rate by the
additional friction of the local turbulent flow. However, one can easily verify that the
flow rate changes by less than 0.01 % for the current configuration, because of
the large pressure drop over the feeding line. Therefore this set-up can be considered
to effectively operate with a constant mass flux condition. In a numerical investigation
Willis & Kerswell (2009) showed that the lifetime statistics for puffs (for sufficiently
long computational domains) did not change for either constant pressure drop or
constant mass flux conditions. Therefore it is valid to compare the present results
with those found in experiments and numerical simulations under constant mass flux
conditions.

To validate that the pipe is internally smooth, the friction factor was determined by
measuring simultaneously the pressure drop and the flow rate. The pressure difference
was measured by an inverted U-tube manometer between pressure taps at 625D and
1514D from the pipe inlet, covering almost 890D. The first pressure tap was far
enough from the entrance to avoid effects due to the development of the flow, even at
high Reynolds numbers (the entrance length for Re =8000 is approximately 500D).
The flow rate was determined by measuring the weight of the fluid that exits the pipe
over at least 200 seconds. The result for the measured friction factor F as a function
of Re is shown in figure 1, in comparison to Poiseuille’s law (F = 64/Re). A laminar
flow state could be sustained for Re > 9 × 103, before natural transition occurred.
Since experiments are carried out only for Re < 2000, it is not expected to observe
spontaneous generation of turbulence. Using laser Doppler anemometry (LDA), a
velocity profile was measured at 2000D from the pipe entrance for Re =1750. Figure 1
shows the measured velocity profile in comparison to a parabolic Poiseuille profile
based on the measured flow rate. In the lifetime experiments, the centreline velocity
was measured by LDA at the same location to validate that the flow disturbance has
the typical characteristics of a puff. This is more reliable than observing the jet angle
at the pipe exit (Rotta 1956; Hof et al. 2006). After each measurement series, the
Reynolds number is determined based on the measured mass flow rate and measured
temperature, and could be determined with an estimated total uncertainty of ± 4 (i.e.
0.2 % at Re = 2000).

In a lifetime experiment, the fully developed laminar flow is shortly perturbed to
create a localized flow disturbance. In the current experiment the flow is disturbed by
a zero mass flux disturbance, at 1514D from the pipe entrance. The non-dimensional
amplitude of the disturbance was equal to 0.1, based on the ratio of disturbance
mass flux and pipe-flow mass flux. The amplitude is above the critical amplitude to
create a puff (Darbyshire & Mullin 1995; Hof et al. 2003). The flow is perturbed
during 0.0625 s (1.1–1.2D/Ub), which is much shorter than the disturbance time of
10–20D/Ub used in previous experiments (Hof et al. 2006, 2008; de Lozar & Hof
2009). Previously, Mullin & Peixinho (2006) found that the critical Reynolds number
is reduced by increasing the disturbance amplitude. The amplitude was chosen in
correspondence to the lowest critical Reynolds number reported by Mullin & Peixinho
(2006). However, de Lozar & Hof (2009) already showed that the type of disturbance
did not change the lifetime scaling.

In the present experiment the lifetime of a puff is determined using two differential
pressure sensors (Validyne DP45). One pressure transducer (PT 1) measures the
pressure drop between taps at 125D and 250D (S2) from the disturbance, and the



Quantitative measurement of the lifetime of localized turbulence 533

Threshold

Δt

tUb/D(–)

D
ev

ia
ti

o
n
 o

f 
p
re

ss
u
re

 f
ro

m
la

m
in

ar
 f

lo
w

:Δ
P

′ (
P

a)
t1 t2 t5 t6 t7t3 t4

ΔP′puff

Surviving puffs
Decaying puffs

0 75 150 225 300

–5.0

–2.5

0

2.5

5.0

Figure 2. Three instantaneous time series of pressure data at Re = 1822, measured by PT 1

showing two surviving and one decaying puff. The dashed black line is the threshold level (T1)
used to determine the location of decay, the second (dashed grey line) threshold (T2) is used
to determine the puff disintegration time. See text for details.

second (PT 2) between 250D and 496D (S3). Both pressure transducers were calibrated
using a micromanometer (Betz) and have a full range of 150 Pa with an accuracy
better than 0.75 Pa. In the remainder of this section only the results from the first
pressure sensor (PT 1) are shown, but an identical analysis applies to each time series
measured for PT 2. The extension to much larger domains by adding more pressure
sensors is trivial.

Figure 2 shows three signals recorded by PT 1; for clarity the pressure drop due
to laminar flow (�P ∼ 64 Pa) has been subtracted. The recording starts just before
the disturbance is applied at t1, where the signal shows a single oscillation with
a large amplitude. The oscillation ensures that the disturbance was applied. The
short-duration pressure oscillation does not induce any significant acceleration or
deceleration of the fluid mass in the pipe. The amplitude of the oscillation would be
much larger when generated by a non-zero mass flux injection, i.e. when the injected
mass is not simultaneously removed.

After the flow has been disturbed, the disturbance forms into a puff and is convected
downstream. Since the puff is now present in section S1, the pressure drop measured
by PT 1 is only due to laminar flow, hence the additional pressure drop �P ′ =0. At
t2 the puff begins to enter section S2, indicated by the increase in �P ′, which reaches
a maximum at t3. Then it falls to approximately half the maximum value, which is
indicative of an adverse pressure gradient at the transition side of the puff. Rotta
(1956) derived that the theoretical upper limit of the pressure increase due to the
transition from a laminar velocity profile to a uniform velocity profile is equal to
1/3ρU 2

b . This would imply a pressure rise of almost 10 Pa. This is not observed in
the present data, because the mean velocity profile inside the puff is not uniform.
Nevertheless, the predicted adverse pressure gradient is clearly visible.

Figure 2 shows the pressure time series (black lines) for two arbitrary puffs. Both
time series show the same characteristics, with a constant additional pressure drop
between t4 and t6, indicating that the entire puff is inside section S2. When the puff
leaves this section, the same characteristics in pressure are observed as when the puff
enters the domain. Due to the presence of only the transition front inside section S2, a
sublaminar pressure drop (�P ′ < 0) is observed around t7. Hence, both puffs survived
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Figure 3. Probability density functions of relative average puff velocity as a function of Re;
(a) in section S1; (b) in section S2; (c) in section S3. The inclined straight line is a least square
fit to the velocity distribution in section S2 and is given in the other plots for comparison.

while passing section S2. For the time series represented in light grey the behaviour up
to t5 is the same as previously described. However, for t > t5 the sublaminar pressure
difference is not observed, from which it can be concluded that the puff decayed
within section S2.

This allows for the determination of the lifetime of each individual puff by observing
the time at which �P ′ drops below a certain threshold. The threshold value should
be chosen below the additional pressure due to the presence of a puff, but should
be higher than the noise amplitude of the signal in the absence of a puff. After
some preliminary investigation a single threshold value of 1.95 Pa was chosen for
all Reynolds numbers (indicated in figure 2). The mean value for �P ′ between t4
and t6 (�P ′

puff ) was determined for all puffs that survive beyond the downstream

pressure tap. A minimum value of �P ′
puff = 2 Pa was found. The pressure signal

noise fluctuation is estimated at 0.37 Pa for laminar flow, which is less than one-fifth
of the selected threshold. The individual lifetimes that were found depended on the
selected threshold value, although the result for the scaling of τ (Re) did not change
significantly for threshold values between 1.2 and 2.7 Pa.

In figure 2 it is clearly visible that the sublaminar pressure peak in t7 does not
occur at t Ub/D = 250, which would be expected when the puff travels with the
bulk velocity. This indicates that the puff is not travelling at the bulk velocity, but
slightly faster. Given the distance between the pressure taps and the time difference
between the occurrence of the pressure peaks, the average velocity of the puff can
be determined. Only puffs that survive beyond the last pressure tap (at 496D after
the injection point) are taken into account. Since hardly any puff survived beyond
496D for Re < 1800, only the measured mean velocities for 1800 < Re < 2000 are
determined.

Figure 3 shows the probability density function of the mean puff velocity in sections
S1, S2 and S3. If puffs would move at a constant mean velocity through the pipe, these
figures would be identical. Comparing the graphs in figure 3 shows that the puff first



Quantitative measurement of the lifetime of localized turbulence 535
P

 (
–
)

tUb/D (–)

Re = 1855

Re = 
1725

100

(a) (b)

200 300 400

tUb/D (–)

100 200 300 400

0.1

1.0

Re = 1855

Re = 1955

0.8

0.9

1.0
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accelerates as it moves downstream, while the velocity PDF in sections S2 and S3

appear to be identical.
Clearly, the puff velocity at given Re is not fixed. An open question is whether

each puff travels at its own constant velocity (for fixed Re), or that the puff velocity
is variable as it travels along the pipe. An indication of the validity of the second
statement is the correlation coefficient of the puff velocity in sections S2 and S3, which
turns out to be between 0.49 and 0.51. This implies that the puff velocity is variable.

Note that in earlier measurements (Hof et al. 2006, 2008), in which the survival
probability was determined for a fixed pipe length L, the characteristic non-
dimensional lifetime was determined as τ = L/Upuff , where Upuff is the mean puff
velocity determined from the time difference between the moment of injection and
the moment the puff reaches the pipe exit at a distance L. Since the puff velocity is
not uniquely defined, we prefer to non-dimensionalize the directly measured lifetime
with D/Ub.

3. Results
To determine the characteristic lifetime τ , first the lifetime of each individual puff

was determined. Then the measurements were sorted according to their Reynolds
number (given by the temperature reading at the pipe exit) and binned with a width
of ±5 for Re = 1725, 1735, 1745, . . . , 1955. The total number of measurements for
each Re is between 500 and 3500. The number of puffs that decayed before arriving
at the first pressure tap were removed from the data. Next, P (t; Re) is found as the
number of surviving puffs over the total number of data, where it drops by one
count for each measured lifetime, until the lifetime exceeds the domain covered by
the pressure transducers.

In figure 4 the resulting probability distributions are plotted. Each point in this
figure represents the measured lifetime of an individual puff. The results for P (t; Re)
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Data from Peixinho & Mullin (2006) and Hof et al. (2008) are included, together with their
linear and super-exponential scaling respectively. The data points of Peixinho & Mullin (2006)
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2007, (�), original (�)).

are clearly exponential (i.e. data follow straight lines in a semilog plot). This is in
agreement with the results for P (t; Re) found by Peixinho & Mullin (2006) and
Willis & Kerswell (2007a). However, here we observe that even for Re above the
critical Reynolds numbers of 1750 and 1870 identified by Peixinho & Mullin (2006)
and Willis & Kerswell (2007a) respectively, numerous puffs decay. Moreover, decaying
structures are observed for Re > 1900, which is the Reynolds number at which the
disturbances were initiated in the experiments by Peixinho & Mullin (2006).

In previous investigations the characteristic lifetime τ (Re) was obtained by
determining the median or half lifetime, i.e. the lifetime for which the survival
probability equals 0.5 (Faisst & Eckhardt 2004; Peixinho & Mullin 2006; Willis &
Kerswell 2007a , 2009). This approach depends heavily on the initial formation time,
indicated as t0 in (1), which is the time needed for the disturbance to develop into
a puff. Instead, the characteristic lifetime (together with the formation time t0) can
also be determined by fitting the expression in (1) to the probability distributions
in figure 4. This has the advantage that τ can be determined for lifetimes that are
shorter than the characteristic lifetime, which avoids the use of a pipe with extremely
large values of L/D (Hof et al. 2008).

In figure 5 the lifetimes are given based on a least square fit to the probability
distribution in figure 4. To estimate the confidence interval a bootstrapping method
was used. By extracting 100 000 new data sets of the same length as the initial data
set from the data given in figure 4, the median and standard deviation of the best
fitting slopes was calculated, resulting in error bars smaller than the symbols used
in figure 5. In the same figure also the data of Peixinho & Mullin (2006), Willis &
Kerswell (2007a) and Hof et al. (2008), together with their proposed best fits, are given.
Despite the different methods used to determine the lifetimes, the best agreement is
found with the data of Hof et al. (2008).
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In addition to the measurement of the characteristic lifetime and mean convection
velocity of the puffs, we used the pressure measurements to determine the
disintegration time (2 �t) of the puffs, which is the time needed to become fully
laminar after decay sets in. It is determined from the time between passing a threshold
T1 and a second threshold T2, and non-dimensionalized by D/Ub (see figure 2).
Cumulative probability distributions for the disintegration time were computed for
decaying puffs at Re =1750, 1760, 1770, . . . , 1910, and are plotted in figure 6. No
obvious trend with Re is observed, so that the disintegration process seems to be
universal over this Re range. It is clear from figure 6 that it takes at least 20D for a
puff to decay, which is approximately the length of a puff (Wygnanski & Champagne
1973). About 80 % of the puffs need less than 60D to disintegrate completely.

To visualize the disintegration itself, the conditionally averaged centreline velocity
measured by LDA was used. The pressure measurements are used to determine the
location of disintegration with respect to the location of the LDA measurement point.
In figure 6 the velocity time series for nine consecutive disintegration times are shown
for Re = 1850 ± 5. The top line shows the averaged velocity profile for a puff that
started to decay 70D upstream of the LDA measurement point. The velocity profiles
for the puffs that decay closer to the velocity measurement point are plotted with
a vertical offset for clarity. The bottom velocity trace shows the result when a puff
has survived up to the point where the velocity is measured and reveals the classical
centreline velocity time series observed for a puff.

4. Conclusions
In this paper we present results of direct quantitative measurements for the lifetime

of individual localized turbulent structures, or ‘puffs’, in pipe flow. The mean shape
of the puff during decay could be reconstructed from conditionally averaged LDA
measurements. Pressure measurements can be used to directly determine the lifetime
of each individual puff, where the measurement is based on a predefined threshold
for the pressure increase when a puff is present in a given pipe section, rather than a
visual inspection of a flow visualization. By combining all measurements, the lifetime
probability distribution P (t; Re) is obtained, which shows an exponential decay given
in (1), which is characteristic for a memoryless process. By using a fit to the probability
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function P (t; Re) the characteristic lifetime τ (Re) could be determined from the slope
of the distribution in a semilog plot. The present results depend neither on the initial
formation time t0, nor on the inclusion of applied disturbances that may fail to
develop into a puff. This avoids possible complications of previous investigations
of the characteristic lifetime. In addition, we obtained direct measurements of the
lifetime probability, rather than observing the probability P (Re; L) that puffs survive
a given pipe length L as function of Re, which implicitly assumed an exponential
decay for P (t; Re).

The present data confirm that the scaling of the lifetime with Re is super-
exponential, as proposed by Hof et al. (2008). This confirms that the lifetime does
not diverge at a finite critical Reynolds number Rec within the observed Reynolds
number range of 1725 � Re � 1955, which is well above previously reported values for
Rec. For Re = 1950 there is a significant fraction of puffs that decay before reaching
the end of the measurement domain, with an estimated characteristic lifetime of
25 × 103 D/Ub (see figure 5). This implies that no indication is found for a transition
in phase space of the strange saddle into a strange attractor, which would imply a
sustained turbulent flow state. Therefore each puff should be considered as a transient
flow state. At much higher Reynolds numbers, puffs may split or grow in length to
form into ‘slugs’ (Wygnanski & Champagne 1973; Nishi et al. 2008). This behaviour
cannot be explained by the current dynamical systems point of view, and a completely
different mechanism may describe the transition to turbulence.

In addition, the measurements show that puffs do not move at a constant mean
speed through the pipe, which is in contrast with previous observations. Furthermore,
the puffs show a rapid decay, which underlies the memoryless process represented by
(1), that occurs within 20–70 pipe diameters.
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René Delfos for the useful discussions on the work presented here. This work is part
of the research programme of the Foundation for Fundamental Research on Matter
(FOM), which is financially supported by the Netherlands Organisation for Scientific
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